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1. INTRODUCTION
When we send electronic mail, funds, or programs to another site, we expect many things to

happen: the message should be delivered to a particular site and not to others; only one copy of the

message should be delivered; the delivery should be timely; the receipt should be acknowledged; and

so on. In computer science terms, these properties are often called safety (correct delivery), liveness

(effective work being done), and performance (work being done fast enough). The social importance

of guaranteeing these properties for electronic media cannot be over-valued: our dependence on

such systems increases daily.

Over the past few years, the Internetwork Concepts Research project at ISI has been studying the

overall problem of protocol verification, as well as the design of correct protocols. Simultaneously,

the ISI Program Verification project has been developing a general-purpose specification and

verification system called Affirm. This report presents the results of joint research over a year's time.

Specific accomplishments include increased understanding of an underlying formalism (state

transition models), rendering of such models in the specification language of Affirm, experimenting

with various ways of expressing the three properties mentioned above so that they can be proved for

state transition specifications, study of several levels of specification (all the way from the user

services down to the programming language implementation), an in-depth study of a particular

protocol (the Alternating Bit protocol), and a survey of a number of other protocols. Our overall

accomplishment is a general method of specifying and verifying certain aspects of protocols,

supported by mechanical assistance. Most of our work has focused on safety properties, rather than

liveness and performance properties.

Because we expect at least one of the three areas of communication protocols, state transition

machines, and abstract data types to be new to mosl readers, we have included an introduction to

each of these topics in this chapter. The main bulk of the report presents a rather simple example of

the integration of these concepts. Thus the emphasis is on methodology rather than the results

obtained for a particular protocol. Later work [42] will present extensive concrete results on

protocols of more practical interest.

Our general method of protocol specification and verification is summarized in Chapter 2. Details

of the specification method are illustrated in Chapter 3. Verification issues are considered in Chapter

4. The method is applied to the Alternating Bit protocol in Chapter 5. Chapter 6 summarizes some of

the results obtained with more complex protocols. Extensions and problems are analysed in Chapter

7. Our conclusions are presented in Chapter 8.
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1.1. State Transition Models
A variety of methods for modeling the behavior of systems in terms of state transitions have been

developed, including finite state automata (FSA) and abstract machines. The key components of

these models are as follows.

1. A set of commands (also called inputs or events).

2. One or more state variables, collectively called the state.

3. A transition function

(command X state) - state.

4. An initial state (assigning initial values to all the state variables).

Each command is a single state transition function mapping the current state into a new state.

Generally, commands are considered atomic operations that are processed sequentially: no

concurrent commands are allowed.

A state transition machine operates by starting in its initial state. At unspecified times, the state is

transformed by one of the state transition functions (or an input "appears," and is used by the overall

transition function to effect a state change). The machine may be designed to operate forever, or may

have a specified set of final states. When one of these states is reached the machine is considered to

have halted.

Within these basic guidelines, there are a number of possible variations. State variables may be

defined as value-returning functions. The commands may have parameters. The effects of

commands may be made visible to the outside world (i.e., the users of the machine) by defining some

of the state variables to be visible, or by producing explicit outputs as additional effects of an

operation. Exceptional conditions may be specified where a given command has no effect on the

state of the system except to produce an error indication or output to the invoking user. If the data

types of the state variables are unbounded (e.g., a queue), the model may not have a finite number of

states.

State transition models are often written graphically, with circles representing states and arcs

representing transitions. Each arc is labeled with the command causing the transition. Outputs

produced are also written on the arcs if needed. Fig. 11 gives an example of a state transition model

for a very simple message system allowing only a single message in transit from sender to receiver.

(This example is explained further in Chapter 3.)
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InitializeService

ReceiveComplete UserSend (MSG)
BUFFER Empty BUFFER 4-Empty o MSG

E -SENT- SENT a MSG

Ackng enng

UserReceive SendComplete
RECEIVED *- RECEIVED 0 MSG

ReadyToReceive

Figure 1-1: A simple message system

1.2. Specification and Verification in Affirm

Affirm [31, 9, 50] is an experimental system for the algebraic specification and verification of user-

defined abstract data types. The heart of the system is a natural deduction theorem prover for the

interactive proof of data type properties. (These properties are stated in the predicate calculus

extended wi I data types.) Programs, written in a variant of Pascal extended with data types, may be

verified using the inductive assertion method [8]. Additional features include tools for the analysis of

algebraic specifications, a library of useful data types, and user interface facilities. Experience

includes extensive experimentation with data type specifications, verification of small programs, the

specification and partial proof of a large file-updating module, and the proof of high-level properties

of protocols and security kernels.

The specification and theorem-proving portions of Affirm are relevant to the current discussion.

1.2.1. Data Abstraction

As Guttag has explained [14, 15, 16], a data type is specified by first defining three sets of

functions:

1. Constructors. These functions create values of the type. Their range is the data type being
specified. All values of the type can be described in terms of a some functional composition of
these functions.
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2. Extenders (or Modifiers). These functions also have the data type being specified as their
range, but in contrast to the constructors, they are not needed to express values of the data
type. (These functions can be expressed in terms of the constructors.)

3. Selectors (or Predicates). These functions yield values of types other than the one being
specified. The general term is selector, but functions yielding values of type Boolean are often
termed predicates.

For example, the constructors of a queue are NewQueue (the empty queue) and Add (appends an

element to a queue). Example extender functions are Remove (deletes the first element from a

queue) and Append (concatenates two queues). Example selector functions are Front and Length.

Example predicates are in and nodups (asks whether there are any duplicate elements).

declare q, ql, q2: QueueOflnteger;
declare I: Integer;

interfaces NewQueueOf Integer, q Add i, Remove(q), Append(ql, q2): Queue0finteger;

interfaces Front(q). Length(q): Integer;

interface i in q: Boolean;

The effect of such a specification is to view values of the type in terms of the constructors that build

them. All selectors and extenders are defined in terms of these constructors. For example, the queue

of integers

<1, 2, 3>

is represented (in infix form) as

((NewQueueOflnteger Add 1) Add 2) Add 3

Thus the first part of a specification gives the names of all operations, their domains, and their

ranges (e.g., the syntax of the type).

The second part of a data type specification provides semantics for the operations. Extenders and

selectors are defined by equational axioms relating how each function behaves when applied to each

of the constructors. (Constructor functions are treated as primitive, unspecified operations.) These

axioms look like equations but are treated by Affirm as left.to-right rewriting rules. Various methods

are used to check the consistency and completeness of the axioms [30, 31]. For example, some

axioms from the type QueueOflnteger are:
axioms

Remove(NewOueueOlnteger) = = NewOueueOf Integer,
Remove(q Add i) 1= if q a NewQueueOfinteger

then q
else Remove(q) Add i,
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Length(NewQueueOlnteger) mu 0,
Length(q Add I) a = Length(q). 1;

Append(q, NewQueueOflnteger) = =q,
Append(q1, q2 Add i) = a Append(q1, q2) Add i.

An important use of these data type specifications is to obtain levels of abstraction, in particular, to

avoid low-level implementation details. For example, in our specification of a queue we don't care

whether it is implemented with an array or via pointers and a linked list. Of course, implementation

details d2 constrain the abstraction, e.g., by space limitations, but this is a separate problem. A

standard method for relating implementations to their abstractions is the representation (or

abstraction) function rep mapping from implementation to abstraction [22, 52]. For example, we

might define a function

rep(a, lb, ub) = = if lb > ub
then NewQueue
else rep(a, lb, ub-1) Add a[ub]

to map from an array A over the sequence of (integer) indices Lt to ub into queues.

The proof of correctness for an implementation involves showing that all abstract operations of

interest have code that computes, via the rep function, the proper function. For example, we might

have a procedure

procedure Removeimplementafion(var a: Array; var Ib, ub: Integer);
2re wf(a, lb, ub);
2Ms wf(a, lb, ub) and rep(a, lb, ub) = Remove(rep(a', Ib', ub'))

... body of procedure ...

where the primed notation x' denotes the initi value of x at the start of the procedure. The

expression "wf(a, lb, ub)" is the implementation (or concrete) invariant well-formed, a predicate

showing that the variables of the implementation will always map into some abstract object. In the

inductive assertion method, the interpretation of the ore and Dgs conditions is as follows. If the

2rcondition holds for the variables at entry to the procedure, then the =oscondition will hold for the

variables at procedure exit. Note that there is no statement that the procedure terminates.

1.2.2. Theorem Proving
Typical data type properties might include "the length of the concatenation of two queues is the

sum of their lengths," stated as

Length(ql Append q2) = Length(ql) + Length(q2)

and "The length of any queue is always nonnegative":

Length(q) > 0
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Such properties are proved by induction based on the constructors of the data type, that is, using

structural induction. For our queue example, the induction schema uses the inference rule

P(NewCueueOflnteaer). (all a. i P(al P(G Add iM)
(all q (P(q)))

In other words, we prove the property P for NewQueueOtlnteger and then, assuming it for some

queue q, prove P for q with any element i appended to it (q Add i). These two proofs suffice to prove

P for all q.

Affirm's style of theorem proving is interactive. The user develops the proof; the system's role is )
to follow the user's commands and provide various kinds of necessary information and checking. It

does not attempt to search for a proof. Affirm simplifies propositions using the data type axioms (as

rewrite rules), with built-in simplification procedures for the predicate calculus. The user can ask the

system to employ induction, split into subgoals, substitute equalities, and apply lemmas;

experimentation with various strategies is often necessary before finding a proof. This

experimentation and backtracking is supported with a model of the proof as a forest oi proof trees,

and with numerous display and query features.

The overall effect is that the user follows the usual mathematical proof methods, but Affirm carries

out the mechanics of the proof (down to the axioms or assumptions). Of course, proofs are not

ironclad: there might be a bug (in either our code or the underlying Interlisp system),1 or the user

might make an invalid assumption. Affirm is used to produce better, not Qgaranteed pefect, proofs.

Such proofs should also be readable (when properly structured in terms of lemmas) and read to be

believed.

A more serious problem is that of ascertaining that we have proved (or are trying to prove) what we

really want proven. Experience has shown repeatedly that propositions we thought were theorems

were =; this quickly led us to the conclusion that "the purpose of proving (with Affirm) is to turn a

coniecture into a theorem."

1To our knowledge, Affirm has never generated an invalid proof; we consider it unlikely that an error would produce just
the right behavior to validate an incorrect theorem, particularly since the user would probably note associated strange
behavior. The usual result of a bug is to prevent a valid proof from proceeding. However, soundness cannot be guaranteed.
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1.3. Protocols

In order to apply state transition models and abstract data types to communication protocols, we

must first understand specification and verification problems in the protocol domain. The meaning of

protocol specification and verification will be described in terms of a model first introduced in [47).

1.3.1. Protocol Specification

A user's interest in a protocol lies in what kind of services it provides. Usually the service involves

interactions with other entities (such as users or programs) in order to get certain functions

performed. For example, one user may wish to interact with another (remote) user by performing

various functions such as SendMessage. How these functions are actually performed by the protocol

is not really of concern; only the end result matters.

Users, then, can regard the protocol as a black box, to which one gives a series of commands in

order to get certain services performed. The description of this machine is termed the service

specification. One theorem we may wish to prove about a service specification is that the messages

receive constitute an initial subsequence of the messages sent (i.e., messages are not delivered in

the wrong order, or garbled, nor are messages spontaneously delivered if they were not sent).

In general, the components used to provide the service can also be regarded as black boxes in

their own right. In the case of protocols there is always more than one entity interacting (because we

are dealing with distributed systems). In order to provide a given service, it is necessary to have

several stations (at least one for each physical site) interacting with each other via some transmission

machine (see Fig. 1-2). The pattern of their interactions constitutes the protocol.

This transmission machine is just another level of protocol. Thus we can see a hierarchy of

abstract machines developing. In this uses hierarchy (following Parnas [36]), each protocol level

makes use of the services provided by the lower level. Within each level, there is an implementation

hierarchy where the service is logically implemented by the abstract protocol specification. The

protocol is implemented in turn by an actual program. Thus for each protocol level N, the following

information must be provided:

1. A service specification, describing the services provided by the level to the users above, at level
N + 1;

2. A protocol specification, describing the interaction of the objects in this level in a precise way
(assuming services provided by the level below, level N- 1); and

3. A program implementing each station in the level (of course, the program may vary from station
to station).

. . .. . . ... . .. ... INm~ l i llldm mn= M =In-'= . ....... ,m " . ...
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USER USER

service
Machine

: station station

Transmission

Figure 1 -2: The internal structure of the service machine

This characterization follows closely the model for open system interconnection being proposed by

the International Organization for Standardization [23].

1.3.2. Protocol Verification
In the context of the model introduced in the previous subsection, we say that protocol verification

is a formal demonstration that the logical design of the protocol (the interaction of the stations within

one layer) satisfies the service specification of that layer.

Note that this will depend on the assumed properties (the service specification) of the layer below.

The ultimate task in protocol verification is to demonstrate that an actual program is a valid

implementation of the protocol specification. That is, when one has reached a low enough level of

abstraction in the specification, it is possible to take an actual program that purportedly implements

the protocol, and show that it is correct with respect to the specification. This is no different from

traditional program verification.

In order to gain greater confidence that specifications are suitable for their intended use, it is useful

to prove properties of a single specification. For example, we might want to show that the sequence

of messages delivered is equal to the sequence of messages sent. Liveness properties such as

freedom from deadlock or eventual termination are also often proved for a single specification. We

will discuss these issues at greater length in Section 3.6.



PROTOCOL VERIFICATION 9

Thus we have three major types of protocol verification problems in each layer of a system:

1. Verification of the protocol against its service;

2. Verification of an implementation against the protocol; and

3. independent verification of desired properties of the service, protocol, and program.

1.4. Related Work
To our knowledge, this work is the first combination of state transition machine, protocol, and

axiomatic specification notions. However, a large body of work exists in each of these areas

individually, and to a lesser extent for each pair.

A variety of methods have been used to specify communication protocols, including Petri nets (and

related graph models), formal languages, sequencing expressions, I/0 histories, and programming

languages. However, the variations on state transition machine methods discussed in Section 1.1

seem to be most popular. Much of this work is either limited in expressive power (e.g., finite state

automata) or lacking a solid theory and automated tools for verification. Sunshine [48] provides a

survey and comparison of this work.

In the area of abstract data types, a large body of work also exists [14, 15, 10,11, 28]. Usually state

transition machine (or abstract machine) model approaches and axiomatic approaches are viewed as

mutually exclusive alternatives [18, 4, 26]. A number of state transition machine models have been

proposed [34,39, 37,4,38, 27]. Several variations of axiomatic methods have also been developed

(16, 25,12]. The notion of specifying state transition machines axiomatically seems relatively

unexplored, although Flon and Misra (7] hint at it.

We have drawn heavily on the following concepts:

Hierarchical layering and cooperating remote stations within a layer from the protocol domain
[47,23];

Verification of the properties of a specification [15, 18, 32, 38, 6, 19, 20, 35]; and

Verification that a lower level system properly implements a higher level one [40, 37, 17,13], or

that the two systems are behaviorally euJanm [4, 45].

Of course, we have had to adapt these concepts to the new environment resulting from the merger of

protocol, state transition machine, and axiomatic specification concerns.
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2. AN OVERVIEW OF OUR METHOD OF PROTOCOL
SPECIFICATION AND VERIFICATION

Our method of specifying and verifying protocols can be summarized as follows:

1. Produce a service specification. If a state transition machine description of the service already
exists, translate it into an Affirm representation. Otherwise directly state the service
specification as a state transition specification in Affirm.

2. Validate that the service specification at least partially meets the requirements of the user
(either the ultimate user or another layer). Typically this involves proving some invariant

rooertie of the specification, e.g., what gets sent by the user at one station gets delivered to
the user at the other station in the same order.

3. Produce the protocol specification. Again, if a state transition machine representation exists,
simply translate it into an Affirm representation.

4. Verify that the protocol specification implements the service specification. This is a two-step
process.

a. First, define a correspondence (a rep function) between the state variables of the two
specifications.

b. Then show that the axioms of the service specification, when reformulated using the
corresponding data structures of the protocol specification, are theorems provable from
the axioms of the protocol specification.

A further validation involves independently stating the service requirements in terms of the state
variables of the r specification, and then proving that the protocol specification satisfies
these requirements.

5. Specify an algorithm implementing the protocol specification.

6. Verify that the algorithm implements the protocol.

Chapters 3, 4, and 5 discuss these steps in some detail. Figure 2-1 displays the relationship of the

elements involved in protocol specification and verification.



(§3.3, 4.1)

Service (J3-1-03.5) -Data Transfer Property (§3.6)

1(§4.2. §5.4)

Protocol (§6.1-§5.3)- Transformed Data Transfer Property (§5.5)

(§4.3)

Program (§6.6)

Figure 2.1: The steps in protocol Verification
* The references prefaced by "§" are pointers to relevant Sections of this paper

Vertical lines mean implemented by;
Horizontal lines mean Invariant of.
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3. A SERVICE SPECIFICATION FOR A SIMPLE
MESSAGE SYSTEM

Perhaps the simplest data transfer service provides for transmission of one message at a time from

a fixed sender to a fixed receiver. The sender must wait until the previous message is received before

sending the next one. There is no possibility of message loss, duplication, or corruption. The system

is shown graphically in Figure 1.1. The next section provides an informal English description of the

state transition machine. We will show how it can be represented in Affirm in the following sections.

3.1. State Variables
There are only a few state variables, each performing a simple function. (Each state variable has

an associated data type, as shown.)

State: ControlState
The current status of the service. This state variable simply cycles through the four values of
the enumerated type ControlState. The four values of the type are ReadyToSend, Sending,
ReadyToReceive, and Acking (Acknowledging). The state variable State is tested by most state
transition functions as a general applicability test: the transition function will not change the
state unless this variable has the appropriate value.

Sent: QueueOfMessage
The queue of messages that have been sent to the receiver. One of the properties to prove
about this service is that the queue of messages sent equals the queue of messages received
(except for possibly the very last message of the Sent queue, which may not have been
received yet).

Received: QueueOfMessage
The queue of messages thai have been received by the receiver. I

Buffer: QueueOfMessage
The queue of messages that have been sent by the sender but not yet received by the receiver.
This state variable represents the channel of a real protocol. In the current protocol, this queue
is either empty, or has exactly one message in it, the one just sent (but of course we have to
prove it, not just say itl).

The types of the state variables are assumed to be explicitly defined (e.g., type ControlState), or are

assumed to have a standard definition (as is the case with type QueueOfMessage).

3.2. State Transitions
A few of the state transition functions would be requested by a user, while others would appear to

the user to occur spontaneously. For example, the user would explicitly request the UserSend

operation, but the SendComplete operation, corresponding to the event "message pops out of the
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channel at the receiver's end," would appear to be spontaneous to the user. These spontaneous
transitions are included to explicitly model the dely involved in sending a message. We consider this

to be an important aspect of the service.

InitializeService
Initializes the state variables. Sent, Received, and Buffer are all initialized to the empty queue,
and State is initialized to ReadyToSend.

UserSend(message)
Only applicable if State is ReadyToSend; otherwise, this operation is a no-op. Adds m to

the Sent queue, adds message to Buffer, and sets State to Sending.

SendComplete
A spontaneous event (the user cannot directly request it). Applicable only if State is Sending,
i.e., there is an outstanding Send operation to be completed. Sets State to ReadyToReceive.

UserReceive
Applicable only if State is ReadyToReceive. The message at the front of the Buffer queue is

added to Received, indicating passage of the message to the user. State is then updated to
Acking--an abstraction of the process of sending an acknowledgment to the sender, telling of
the receipt of the message.

ReceiveComplete
A spontaneous event, corresponding to the event "sender receives acknowledgment of
message receipt." Applicable only if State is Acking. A message is removed from Buffer, and
State is updated to ReadyToSend, indicating the cycle is complete.

3.3. Behavior of the Simple Message System

The state machine starts by performing the InitializeService command. The system then repeatedly

cycles through the four states ReadyToSend, Sending, ReadyToReceive, and Acking. Each of these

four states has only two successor states: itself (when a command that is not applicable is issued, in

which case there's no change), and the next in the cycle. (Of course, at any time the InitializeService

command can be re-issued, in which case the machine is reset to its initial state.)

As the system cycles through the four states, it maintains an invariant: the sequence of messages

sent equals the concatenation of the sequence of messages received and the single message

currently being sent (if there is one).2 This and similar properties are called service requirements. If

the state transition machine is specified correctly, these properties are straightforward to verify.

2 Almost. We ill discum the correct formulation of this property later.
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3.4. Converting State Transition Specifications to Affirm
The Affirm representation of a state transition machine is basically just a representation of the

state vector of the state machine. Each state variable forming one part of the machine's state vector

becomes a selector function. Each state transition function (command) becomes a constructor.

There are usually no extender functions in this scheme. The axioms simply state how each state

variable is modified by each state transition function.

3.4.1. State Transition Function -. Constructor
Each state transition function (command) of the state transition machine becomes a constructor of

an Affirm type.

state machine SimpleMessageSysten;

declares: SimpleMessageSystem;
declare m: Message;

constructors
InitializeService, UserSend(s, m), SendComplete(s), UserReceive(s), ReceiveComplete(s): SimpleMessageSystem;

Each constructor has as its range the type being defined. And each of the constructors (except the

initialization function) is given a parameter of the type being defined. This parameter represents the

entire state of the system. Thus state or event histories can easily be represented as compositions of

the constructor functions. For example, the sequence of commands representing a machine cycle

InitializeService; UserSend(m); SendComplete; UserReceive; ReceiveComplete

would simply be

ReceiveComplete(UserReceive(SendComplete(UserSend(InitializeService, m))))

3.4.2. State Variable -. Selector
Each state variable of the state transition machine becomes a selector function in the Affirm

specification. In the Affirm specification, each function will take a parameter of the type being

defined. Thus each state variable is simply an extraction function of the state vector.
selector State(s): ControlStale;

selectors
Buffer(s), Sent(s), Received(s): OueueOlMessage;

3.4.3. Transition Definition -' Set of Axioms
The preceding subsections paved the way by defining the domain and range information of the

constructors and selectors. Now we must define their semantics. It will become quite clear why each

function carries along the "state" parameter: it provides a natural way of describing a transition. We
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will demonstrate the method by writing the axioms for the state variable Sent. From Section 3.2, we

know that the state variable Sent is modified by the InitiaiizeService operation, possibly modified by
the UserSend operation, and not modified by the remaining Operations SendComplete, tiserReceive,

and ReceiveComplete.
axioms

1. Sent(UserSend(stste. message))
Hf State(state) s ReadyToSend

then Sent(state) Add m
else Sent(state),

2- Sent(SendComplete(stste)) - - Sent(slate).
3. Sent(Ua eive(state)) - - Sent(state).
4. Sent(RoceiveComPiete(state)) = Ssnt(atate).
5. Sent(InitializaService) w. -0 New 0.. 1 wge;

Axioms 2, 3, and 4 simply state that the operations have no effect on the state variable. For example,

axiom 2 says "the value of the state variable Sent after a state transition from state state to state

SendComplete(state) is equal to the value of Sent in state state." Similarly, axiom 1 says "if the state

variable State in state state is Read yToSend, then the operation UserSend will have an effect on the

state variable Sent; otherwise it won't." This method of constructing a specification ensures that the

specification will be complete--the effects of each command on each state variable are detailed.

3.5. The Af f irm Rep resentation
The following is a stylized representation of Affirm input, for the sake of readability. State

transition functions that leave a state variable unchanged are not explicitly Specified; the convention
is "not specified, not modified. " The actual Affirm input is displayed in Appendix 1.

state machine SimpleMessageSystent

decles : SlmpleMessag.System;
declare m: Message;

constructors InitislizeServic., UserSend(s, in), SendComplete(s), UserReceive(s). RecelmeCompleess);
selectors Buffer(s). Sent(s). Received(s): QueueOlMessags;
selector State(s): ControlState;

axiom* (InItiellzoService)
State(initlalizeService) a ReadyToSend,
SufertinitiailzeServics) a.Newoueueafmessage,

Sent(lnltalizeSorvice) -a NewOueuealMessge,
Recelved(lnltializeService) asNswOueuefMessage;
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axioms (LUa~rS~ndl
4 State(User~end(s, in)) .=if State(s) *ReadyToSend

then Sending
else State(s),

Buff er(UssrSend(s, mn)) N i State(s) a ReadyToSend
then Buffer(s) Add m
else Buffer(s).

Sent(UserSend(s, in)) a=if State(s) = ReadyToSend
then Sent(s) Add mn
elas Sent(s);

axioms {SendComplte)

State(SendCoMplete(s)) . = If State(s) a Sending

else State(s);
axioms {UserRecolve)

State(UserReceive(s)) - = it State(s) - ReadyToReceive
then Acking
else State(s),

Received(UserReceive(s)) z if State(s) = ReadyToRecelve
then Received(s) Add Front(Buff er(s))
else Received(s);

axioms {ReciveComplete)
State(ReceiveComplete(a)) = i State(s) = Acking

then ReadyToSend
else State(s),

Buffer(ReceiveComplete(s)) ==if State(s) = ACking
then Reinove(Buffer(s))
else Buff er(s);

end (SimpleMessageSystem);

3.6. Properties of a Specification
To increase our confidence that the state transition machine we have specified is a reasonable

one, we can formulate certain properties we expect to hold during the machine's operation. These

service requirements may be proved using structural induction as described in Section 1.2.2. We

present an example of such service requirements for the simple data transfer service.

A useful safety property for this service might be:

Sent = Received join Transit

stating that the messages received are equal to the messages sent except for any still i transit. WeJ

must be careful in our definition of Transit to take into account the state Acking when the message is

still in Buffer, but has been received. The exact theorem in Affirm would be:
theorem Data TransterService, all s (Sent(s) z Received(s) join Transita(s));

define Transit(s) a-If State(s) = Acking
then New(DueuseaMessage
elso Buffer(s);

This theorem has been proved in Affirm.
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Another form of the service requirement might be
(State(s) a ReadyToSend) D (Sent(s) w Received(s))

stating that Input exactly equals output whenever the system returns to its "idle" state. This turns out
to be a special case of the more general theorem above.

Liveness properties for this simple machine are relatively trivial. It is fairly obvious that the allowed

progression of states involves a single fixed cycle (ignoring rejected operations having no effects),
where a single message is transferred during each cycle. First, the meaning of "ignore rejected
operations" is formalized, as follows:

Interface StripNoOps(s): SimpleMessageSystem;

axioms
StripNoOps(InitializeService) = a nitialixeServlce,
StripNo~ps(LUserSend(s. in)) = =if Stats(s) ZReadyToSend

then UserSend(StripNoOps(s), m)
els StripNoOps(s).

then SendComplete(stnipoOps(s))
Stripo~ps(~nd~mplet~s)) e= i Stps) =Sdin

StripNoOps(Ueerfeceive(s)) = = if State(s) = ReadyToReceive
then Llserfeceive(StripNoOps(s))
else StripNoOps(s),

StriptoOps(ReceiveComplete(s)) = if State(s) = Acking
then Receive~omplete(StripNoOp(s))
else StripNo~pasa);

theorem StateaMatch, ails ( State(s) =State(StripNoOps(s))

and Sent(s) =Sent(StripNoOps(s))

and Received(s) - Received(StripNoOps(s))
and Buffer(s) = Bufter(StripNoOps(s)));

The definition of StripNoOps simply formalizes our intuition about events having no effect because
they occur at an inappropriate time. For example, a SendComplete event after a LlseReceive event
can have no effect. The theorem StatesMatch says that the effects of a sequence of events are the
same as the effects of a new sequence that has had the no-effect operations filtered out. This
theorem was proved in Affirm.

In the context of the above definitions, then, the following theorem says that the four operations, in

the right order, add a message (and the correct one) to those received, no matter how many
additional "rejected" operations may have been interleaved.

theorem Servlcerogrow, all al. aQ, mn
( StrlpNoOpesa2) a RecelvsCompleteusereceive(SendComplete(UasrSend(StrpNoopal). mn))))
and State(s1) =ReadyToSend

Imp St.(s%2) .ReadyToSend

and Smnt(2) Smnt(al) Add mn
and Recetvad(a2) - Recelved(a1) Add in);

This theorem has also been proved using Affirm.
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Finally we note th.t the system will progress around this cycle as long as each operation completes

in finite time. This is an assumption at the service level, but of course it must be proved when we see

how the protocol implements each operation.

3.7. Alternative Notations
Instead of implicitly representing the machine's state vector, we could have represented it explicitly

by defining =ne constructor, say Const. Const takes a number of parameters (one per individual state

variable), and creates one state vector out of them:
constructor Const(state. sent, received, buffer): SimpleMessageSystem;

The individual state variables are then defined as vector-extractors:
State{Const(state, sent, received, buffer)) = state,
Sent(Const(state, sent, received, buffer)) = = sent,
Received(Const(state, sent, received, buffer)) = = received,
Buff er(Const(state, sent, received, buffer)) = = buffer;

and the state transition functions, nominally constructors, would become extenders:
UserSend(Const(state. sent, received, buffer), message)

= = if state = ReadyToSend
then Const(Sending, sent Add message, received, buffer Add message)
else (no change) Const(state, sent, received, buffer),

SendComplete(Const(state, sent, received, buffer))
= = if state = Sending

then Const(ReadyToReceive, sent, received, buffer)
else (no change) Const(state, sent, received, buffer),

UserReceive(Const(state, sent, received, buffer))
= = if state = ReadyToReceive

then Const(Acking. sent, received Add Front(buffer), buffer)
else (no change) Const(state, sent, received, buffer),

ReceiveComplete(Const(state, sent, received, buffer))
= = if state = Acking

then Const(ReadyToSend, sent, received, Remove(buffer))
else (no change) Const(state, sent, received, buffer),

InitializeService = = Const(ReadyToSend, NewQueueOtMessage, New~ueueOfMessage, New~ueueOMessage);

This notation often results in fewer axioms overall, but each axiom is usually much more complex

than those of the notation we described above. This is especially true when one state has a large set

of successor states. We have chosen the first notational method for expressing state vectors in

Affirm because of its convenience. The axioms, with a bit of practice, are generally more

understandable because each is relatively simple.

_____....... __ ____ ___ __
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4. VERIFICATION ISSUES
As mentioned in Chapter 1, we would ideally like to verify three kinds of properties of a

specification: safety (only correct things happen), fiveness (eventually something happens), and

performance (things happen promptly).

Safety properties are typically proved by structural induction, as was described in Section 1.2.2.

Most of our work has focused on this concern.

Liveness properties may be handled by showing that the system terminates:

1. Some operation is always enabled, or the system has reached one of its final states; and

2. Each operation decreases some bounded measure function, which at some point (nominally,
when it evaluates to zero) disbles all operations (for example, by setting a special state
variable to false; presumably all the operations are applicable only if the variable is true).

This issue is discussed at length in [2]. Temporal logic also provides convenient techniques for

stating and proving liveness properties [20,33]. We deal only briefly with liveness properties in this

report.

Performance properties have traditionally been dealt with by other methods (e.g., queueing theory);

we have not addressed this issue.

4.1. Verifying Properties of a Specification
As noted in Section 1.2, one of the main capabilities of Affirm is the ability to verify that a data type

has certain desired properties. These properties are specified as theorems and are then proved using

the interactive theorem prover of Affirm.

Typically these theorems are invariants in the state transition model. That is, they are predicates on

the state that are true in the initial state, and are preserved across all state transitions. In Affirm,

these theorems are proved from the axioms of the type being specified (and other predefined types)

by structural induction. In the context of the simple message system of the preceding chapter, to
prove a theorem P(s) for all states s, first prove the theorem P(InitializeService); then, assuming P(s)

for some state s, prove P(fcn(s)) for each constructor fcn in the type. This suffices to show P(s) for all

S.

It is also overkill. What Is proved Is that any order of occurrence of the events of the state transition

machine is acceptable; the invariant still holds. Carrying out such a proof requires a ruggedized
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machine that has extra tests to ensure that operations invoked at inappropriate times can do no harm:

no state change occurs. Real protocols have (implicit) assumptions stating which operations can

happen when. It is unlikely, for example, that a time-out can occur if there are no messages that have

F. been sent but not yet acknowledged. Thus proving properties of a program that uses an abstract

machine in a certain way may be easier (and allow a simpler machine specification) than proving

properties of the machine for arbitrary programs.

4.2. Verifying the Protocol against the Service Specification

We must show that the detailed system (composed of stations interacting according to the

protocol) does the same thing as the abstract system (specified by the service: see Section 1.3).

This brings us to the problem of what it means for one abstract machine (or set of machines) to

implement another. There are two aspects of this relationship:

1. a static correspondence between each state of the higher level and the state(s) implementing it
at the lower level, showing that every higher level state is in fact implemented; and

2. a dynamic correspondence between the transitions of the two levels, showing that the
sequence of states reachable in the two levels are the same.

Point 1 is typically handled by giving a representation function rep from the state variables of the

lower level to the state variables of the higher level. The function is specifically defined in this

direction because there may be several lower level states that all represent the same higher level state

(so the function has no inverse). Also, some lower level states may be intermediate states that do not

represent any higher level state. As noted above, it must be shown that there is some lower level state

to represent every higher level state.

To address point 2, the conventional approach involves specifying a fixed sequence of lower level

operations implementing each higher level operation. Then it must be proved that if the two systems

start in corresponding states, they will end up in corresponding states after corresponding

operations.

Let S and s be higher and lower level states respectively. Let OP be a higher level operation and op

be its lower level implementation, and let rep be a representation function (from s to S). Then this

method attempts to show that for -rach OP

V S, s (S = rep(s) D OP(S) = rep(op(s)))

The difficulty of this approach in the protocol domain is that a higher level operation such as
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sending a message may be accomplished by a nondeterministic sequence of lower level operations,

including transmission, loss, time-outs, retransmissions, and receptions. Typically there will be a

single low-level operation that starts the accomplishment of the higher level operation by "posting"

some work to be done. This will then be followed by a nondeterministic series of lower level

operations, invisible at the top level, that complete the results of the higher level operation in the

unreliable low-level environment. These latter effects may be viewed as one or more spontaneous

transitions of the higher level machine. Section 5 gives an example of this sort.

In this type of lower level specification, there are two sorts of operations: one set invoked directly

by the users of the system (corresponding to the higher level operations), and a second set of internal

operations.

Verification of this type of lower level specification is similar to the conventional situation discussed

above, but must be augmented by a proof that the spontaneous higher level transitions (and only

such transitions) are accomplished by the internal operations of the lower level. This additional proof

is facilitated by defining the internal operations in a ruggedized fashion that includes tests in their

definitions to force them to produce no changes if invoked at inappropriate times. The additional

theorems to be proved take the following form: From any low-level state corresponding to a higher

level state with spontaneous transitions, the next lower level state that "maps up" and can be reached

by any sequence of internal lower level operations must correspond to the correct higher level state.

We can define this recursively as follows.

V S such that S has one or more spontaneous transitions
(V s such that S = rep(s)

(SpontSucc(S) = rep(UpSuccessors(s, S))))

where rep is extended in the natural manner to sets
SpontSucc(S) is the set of states reached from S by spontaneous transitions
UpSuccessors(s, S) =

{s2: Successor(s, s2) and MapsUp(s2) and S * rep(s2))
U UpSuccessors(s3, S)
vs3: Successor(s, s3) and -MapsUp(s3)

Successor(sl, s2) = 3 internalOp such that (s2 = internalOp(sl))
MapsUp(s) = true if s represents some high-level state

This general formulation often simplifies considerably, as shown in the example in Chapter 5.
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4.3. Verifying a Program against the Protocol Specification
If we followed the pattern of the lower level (protocol) and higher level (service) specifications

discussed above, each operation of the protocol specification would be implemented by a separate
Pascal procedure. However, an actual implementation of a protocol is somewhat more constrained.

A state transition machine defines a global state and specifies how transitions change the state

variables. Since the purpose of protocols is to provide for communication between disjoint

processes, an actual implementation will be divided into cooperating stations (as described in Section

• 1.3); only the state variables describing the communications medium will be shared between stations.

Since losses are a spontaneous behavior of the medium, they are not implemented.

While it was convenient for our specification to allow operations to be invoked in any order, only

certain sequences of operations are efficient. (For example, it makes little sense for the sender to

retransmit without first checking for acknowledgments.) Therefore the programs typically exhibit only

a subset of the allowable behavior. The intention is that only inefficient event sequences have been

omitted.

Of course, many properties of states proved at higher levels may be transferred down to programs.

However, the constraints introduced by the program may require additional proofs for liveness, e.g.,

the constraints do not introduce deadlock.

-ALA--
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5. DETAILED EXAMPLE: THE ALTERNATING BIT
PROTOCOL

We will continue the exposition of our methodology, using the Alternating Bit protocol as an

example. First we will specify a protocol providing the simple data transfer service described earlier.

We will then perform the various verification tasks.

5.1. A Brief Description of the Protocol
The Alternating Bit protocol [1, 5, 21, 20, 6] is intended to provide a simple but reliable message

transfer service over an unreliable transmission medium. It attaches a one-bit sequence number to

each message sent, and waits for an acknowledgment of the receipt of the message by the

destination. The sequence number is complemented on each new message sent--hence the name of

the protocol. If the acknowledgment is not received within a time-out period, the message is

retransmitted (with the sequence number unchanged). The protocol guarantees correctly sequenced

delivery of messages even if the medium loses messages and acknowledgments, but the medium

cannot reorder messages.

To accomplish these functions, the sender and receiver stations maintain local sequence number

counters. The sender uses its counter to remember the sequence number to attach to the next

transmission. The receiver uses its counter to remember the sequence number of the next message it

expects to receive, thus allowing for the removal of duplicate messages (which will be sent if an

acknowledgment is lost).

The Alternating Bit protocol is a simple instance of a general class of data transfer protocols using

positive acknowledgments and retransmission on errors [46, 44, 24]. This simple example allows only

one unacknowledged message to be transmitted at a time. More complex protocols in this class use

larger sequence numbers and allow multiple outstanding messages.

In Section 5.2 we provide an informal definition of a state transition machine for the Alternating Bit

protocol, and in Section 5.3 this specification is translated into an Affirm representation. We then

discuss the major verification step, showing that the protocol implements its service correctly. We will

then discuss an important invariant of the protocol slecification (independent of the service). Finally

we give algorithms for the sender and receiver stations, and show that these algorithms property

implement the protocol.

a _ o _
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5.2. A State Transition Machine for the Alternating Bit Protocol
The protocol machine described in this section closely parallels the service machine described in

Chapter 3, with the addition of details concerning the internal operation of the protocol. The protocol

is defined as a single machine rather than as separate sender and receiver components (see Section

7.1). Figure 5-1 illustrates the main data structures and operations of the protocol.

ProtocolSendI i S~ender[' l cvl
ReReceived

'T 
ReceivePacket

Packet

S etransmit i

ReceiveAck , De li ve r

LoseAck

FIgure 5-1: The protocol state transition machine

5.2.1. Data Types Used in the Specification
The protocol uses a few more data types than the service specification does. Their informal

descriptions are gathered here for convenience.

Message
As in the service specification, this type is a minimally defined data type that represents abstract
contents.

Bit An enumerated type with two elements, arbitrarily called gn and oft. Functions include a "flip"
operation that flips the value (from a to gff or vice versa), represented by the unary not
operator -
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Packet
A record (or tuple) with two components: a value of type Bit (i.e., a sequence number) and a
value of type Message.

Medium
Really a QueueOtPacket with the addition of operations to "lose" packets. Further
enhancements (e.g., to allow the reordering of packets) might be desired in a more realistic
medium. The channels of the protocol are of this type. The Transmit operation takes a value of
type Medium and a value of type Packet and yields a value of type Medium. It thus corresponds
to the Add operation of the Queue type. Similarly, Receive corresponds to the Queue operation
Remove.

QueueOtPacket, QueueOfMessage, SequencefMessage
Standard data types from the Affirm Type Library.

5.2.2. State Variables

SenderToReceiver: Medium
The channel from the sender to the receiver.

ReceiverToSender: Medium
The channel from the receiver to the sender. For convenience, entire packets are returned as
acknowledgments, rather than just the sequence numbers.

Pending: QueueOtPacket
The packet currently being transmitted, if any. Pending is either empty (i.e.,
New~ueueOtPacket), or contains exactly one packet. A queue type was used instead of a
simple packet in order to avoid notions of a null packet, and to allow future extensions.

SSN: Bit
The sender's current sequence number (i.e., the next acknowledgment of interest).

RSN: Bit
The receiver's current sequence number (i.e., the number of the next packet expected).

ReceiverBuffer: QueueOfPacket
The packet received but not yet delivered to the user (if any). ReceiverBuffer is either empty, or
has exactly one element. A queue type was used for convenience.

Sent: SequenceOfMessage
A sequence of all the messages sent but not necessarily acknowledged yet. (This variable
would not be present in a real implementation; It is for specification purposes.)

Received: SequenceOtMessage
A sequence of all the messages successfully received. (This variable would not be present in a
real implementation; It Is for specification purposes.)
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Of course, not all these data structures are visible or available to both stations (sender and

receiver).

5.2.3. State Transition Functions

InitializeProtocol

Set the counters and the queues to their initial values.

ProtocolSend(m)
Given a message M, try to send the message as a packet. If no message is waiting to be
acknowledged (Pending = NewOueueOfPacket) then accept the message m (by appending it
to Sent) and transmit it (by constructing a packet with the current SSN and adding the packet to
SenderToReceiver). Also remember that the packet is waiting to be acknowledged (by putting it
in Pending).

ReceivePacket
Receive a packet, if one is available. If SenderToReceiver is nonempty, remove and examine
the first packet. If it is the one expected (its sequence number matches RSN), then place it in
ReceiverBuffer and flip RSN. If the packet has already been delivered, then send an
acknowledgment by copying the packet to ReceiverToSender.

Deliver
Deliver a new message (if there is one to be delivered) to the user. If a message is available in
ReceiverBuffer, append it to the Received queue, and acknowledge the message (by copying it
to ReceiverToSender). Clear ReceiverBuffer.

ReceiveAck
Receive an acknowledgment, if any exists to be received. If ReceiverToSender is not empty,
then remove the first packet. If the packet's sequence number doesn't match SSN, then ignore
the packet. Otherwise, flip SSN and empty Pending (preparing for another Send operation).

Retransmit
Add the message in Pending, if any, to SenderToReceiver, i.e., re-send it.

LosePacket
Lose a packet by removing the front packet from SenderToReceiver, if it is not empty.

LoseAck
Lose an acknowledgment by removing the front of ReceiverToSender, if it is not empty.

As an example, a typical state of the system might be

ReceiveAck(Deliver(ReceivePacket(ProtocolSend(InitializeProtocol, m))))

This represents the sequence of operations (reversed from their functional representation)

InitializeProtocol; ProtocolSend(m); ReceivePacket; Deliver; ReceiveAck
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5.3. The Affirm Representation
As was the case with the service specification, we simply turn state variables into selector functions

of a data type; state transition functions (commands) become constructors. The definitions of the

state transition functions become axioms. All the functions in the Affirm representation carry along
an explicit parameter of the type being defined; it is a characterization of the current state.

What is displayed here is a stylized version of the axioms, omitting all axioms stating that some
selector is not modified by some constructor. Appendix 11 contains the actual Affirm input.
state machine ARProlocol;,

declasres9: ABProtocol;
declare m: Message;

constructors
InitializeProtocol, ProtocolSend(s,m), ReceivePacket(s), Deliver(s), ReceiveAck(s), Retransmit(), LoseAck(s). LosePacket(s);

selector* InitialSequenceNumber, RSN(s), SSN(s): Bit;
selectors RecelverToSender(s), SenderToReceiver(s): Medium;
selectors Received(s), Sent(s): OueueOffessage;
selectors Pending(s), ReceiverBuffer(s): QueueOf Packet;

axioms {InfltallzeProtocol:)
Pending(InitiallzeProtocol) = New~ueue~f Packet,
Received(InitializeProtocol) N 'ewOueueOfMessage,
Receiver~uffer(lnitializeProtocol) ::= NewOueueOf Packet,
ReceiverToSender(lnitializeProtocol) = = InitializeMedium,
RSN(InitializoProtoCol) = = InitialSequenceNumber,
SenderToReceiver(lnitializeProtocol) = = itializeMedium.
Sent(InitializeProtocol) = = New~ueueOlMessage,
SSN(InitializeProtocol) = = initialSequenceNumber;

axioms {Protocol~end:)
Pendlng(Protocol~end(s in)) = i Pending(s) =New~ueueOf Packet

then New~ueuesaPacket Add MakePacket(m, SSN(s))
else Pending(s),

SenderToRecelver(ProtocolSend(s, in)) = I Pending(s) = NewOueueOtPacket
then Transmit(SenderToReceiver(s). MakePacket(m, SSN(a)))
else SenderToReceiver(s),

Sent(ProtocotSend(s. in)) N I Pending(s) a New~ueueOfPacket
then Sent(s) Add m
else Sent(s):

axioms fRec.IvePecket:J
Recelverluffer(RecevePsckt(s)) = I Seq(Front(SenderToReceiver(s))) a RSN(s)

and SenderToReceiver(s) - a InitializeMedium
then New~ueueNfPaccet Add Front(SenderToReclver(s))
else ReceiverSuffer(s).

ReceiverToSender(RecelvePacket(s)) = If SenderToRecever(s) - = InitializeMedlum
and Recelver~uffer(s) a New~ueueOfPaccet
and RSN(s) - a Seq(Front(SenderToRecelver(s)))

then Transmlit(RecelverToSender(s), Front(SenderToRecelvsr(a)))
elsm ReceverToSerders),

RSN(Receivefacket(s)) N I Seq(Front(SenderToReceivsr(s))) a RSN(a) and SenderToRecelver(s) - aInltislitsMsdlum
then -RSN(s)
east RSIN(s),

SsnderToRecelver(Recele&cke(s)) a ReceIve(SenderToRecelver(s));

-sajid
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axioms {Delive.:)
Recoeved(Deliver(s)) a I ReceiverBuffer(s) aNewOueu.Of Packet

then Received(s)
ohm Received(s) Add Text(Front(ReceiverBuffer(s)))

ReceiverSuferjDeliverls)) ==NewQueueOlPacket,

ReceiverToSender(Delver(s)) a I ReceiverSuffer(s) - New~ueueOf Packet
then ReceiverToSender(s)
else Tranismit(ReceiverToSender(s), Front(Recelver~uffer(a)));

axiom* (Roceiv*Ack:)
Pending(Recevefck(s)) =aIf Seq(Front(ReceiverToSender(s))) n SSN(s) and ReceiverroSender(s) - aInitializeledium

then NewOueueOf Packet
else Pending(s),

ReceiverToSender(Receivefck(s)) = - Receive(ReceiverToSender(s)),
SSN(ReceiveAck(s)) = If Seq(Front(ReceiverToSender(s))) = SSN(s) and ReceiverToSender(s) - a nltializa~edium

then -SSN(s)
else SSN(s);

axiom (Retransmit:)
SenderToRecever(Retranemit(s)) a a if Pending(s) n NewOueueOf Packet

then SenderToReceiver(s)
else Transmit(SenderToReceiver(s), Front(Pending(s)));

axiom {LosoAck:)
RecaiverToSender(Loaefck(s)) = = Receive(ReceiverToSender(s))

axiom {Los.PacAet:)
SenderToReceiver(LosePacket(s)) =aReceive(SenderToReceiver(s));

end {ABProtocol);

5.4. Verifying the Protocol against the Service Specification
This section presents a detailed example of how to verify that a lower level state transition machine

specification implements a higher level one. In this case the system in question is the Alternating Bit
protocol, and the two levels are the service (higher) and protocol (lower) specifications.

5.4. 1. Safety
The service specification (see Section 3.5) includes UserSend and UserReceive operations, and an

InitializeService operation to initialize the system, all meant to be invoked by the users of the service.

It also includes spontaneous transitions SendComplete and ReceiveComplete, modeling the
completion of the UserSend and UserReceive operations within the distributed system providing the

service. Hence there are four control states at the service level, as shown in Figure 1-1, with the two
intermediate states explicitly displaying the delay between one user initiating an operation and the

other user becoming aware of it. The state variables used at this level include a buffer Butter for
messages sent but not yet received (at most one is allowed), and queues Sent and Received that
maintain histories of all messages sent and received (these are only used for specification purposes).

There is also a control state variable State with four possible values.
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The protocol level (see Section 5.3) has operations corresponding to each of the user operations at

the service level:

InitializeService - InitializeProtocol

UserSend - ProtocolSend
UserReceive -. Deliver

There is also a second set of protocol operations that collectively accomplish the spontaneous

operations of the service level. These are ReceivePacket, ReceiveAck, LosePacket, LoseAck, and

Retransmit. The service-level state variables Sent and Received are implemented transparently, while

Buffer is implemented as the text of the first packet in the queue of packets called Pending. The

service-level control states (ReadyToSend, Sending, ReadyToReceive, and Acking) correspond to

four defined state classes at the protocol level (S1, S2, S3, and S4). Figure 5-2 summarizes these

correspondences informally.

Service Protocol

InitializeService InitializeProtocol

Sent Sent

Received Received

Buffer Text(Front(Pending))

State
ReadyToSend S1

Sending S2
ReadyToReceive S3
Acking S4

UserSend ProtocolSend

UserReceive Deliver

SendComplete any sequence of the operations
ReceiveComplete {ReceivePacket, ReceiveAck, Retransmit, LosePacket, LoseAck)

Figure 5-2: The correspondence between service and protocol-level state variables

Our method of proving that a protocol implements Its service specification is to convert each of the

service-level aioms into a theogrm at the protocol level, and then to prove these theorems using the

protocol specification. This follows the method of [17]. Appendix 111.1 shows the formal

1 11 I ~M.W I - f_.:, --- --
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correspondence between functions at the two levels using a representation function rep, and

Appendix 111.2 defines the protocol-level state classes. The basic method is to replace each

occurrence of the service machine state in the axioms of the service specification by the rep of its

corresponding protocol states, and then to use the other rewrite rules displayed in Appendix 111.1 until

the expression is reduced to terms involving only protocol-level selectors anti constructors.

This conversion is most conveniently discussed in three portions. The easiest axioms to convert

are those defining the results of the user operations (UserSend, UserReceive, and InitializeService)

on the state variables. Since each service-level operation is directly implemented by a single

protocol-level operation, and the state variables also have a simple correspondence, the resulting

theorems are easily obtained. Appendix 111.3 shows how two service axioms are converted in detail,

and Appendix 111.4 gives all of the resulting theorems in this category.

The next group of theorems are those concerning the effects of the spontaneous service

operations on the state variables. Here there is no fixed correspondence of one protocol operation

for each service operation. Instead, we wish to show that ZU sequence of the five spontaneous

protocol operations (ReceivePacket, ReceiveAck, LosePacket, LoseAck, and Retransmit) will have the

specified effect. For state variables Sent and Received this is simple because the spontaneous

operations are specified to have 1o effect on these variables. The first two theorems of Appendix 111.5

state that each individual operation will have no effect, so we can also conclude that any sequence of

these operations will have no effect. This may be viewed as a special case of structural induction,

considering only the spontaneous operators, and attempting to show that Sent (or Received) is

invariant.

The case for Buffer is more complex since there is a possible effect from the spontaneous

operations. We must show that if the system is not in state S4 (corresponding to Acking in the service

specification), then there will be no effect, and if it is in state S4, then Buffer will become empty (i.e.,

NewOueueOtMessage). The first case is similar to the situation for Sent and Received, with the

additional constraint that the system can never enter state S4 from another state by spontaneous

operations. The third theorem of Appendix 111.5 shows that no single action can modify Buffer in this

case, and therefore no sequence can, as above. For the S4 case, the final theorem of Appendix 111.5

states that the spontaneous operations either leave the system in state S4 with Buffer unchanged, or

set Buffer to NewQueueOfMessage and enter state S1. Once in state S1, we know from the previous

theorem that there will be no further change to Buffer. We can then conclude that if the protocol

progresses (to state S i), It behaves as specified in the service. This proves the Uhfet of the protocol.

A separate argument Is necessary to prove livenem.
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The final set of theorems, in Appendix 111.6, covers the effects of the operations on the service-level

state. For the user operations, we must show that the correct next state is generated by the

corresponding protocol operation for each of the four states the system may be in. This is stated in

the first and fourth group of theorems (the initial state was already covered). For the spontaneous

operations, the situation is similar to Buffer above. We must show that any sequene of

ReceivePacket, ReceiveAck, LosePacket, LoseAck, and Retransmit can cause only the transitions

specified for SendComplete or ReceiveComplete (i.e., if the system progresses to a new state at all, it

is the correct one). For the most part these theorems say that no state change takes place--only

theorems SlSucc 1, S2Succ2, and S4Succ3 show actual progress (page 51). Once again, only safety

is covered here.

All the theorems in Appendix III have been proved, showing that the protocol correctly implements

the service. (The proofs of all theorems claimed to have been proved in this report are documented in

[51].) The proofs require a number of definition invocations and substitutions that are tedious. They

also require several lemmas concerning the relationship between SSN and the sequence numbers of

the packets in the mediums. We cite just two as examples:

theorem PAtsOIdRP, all s, med (PktsOld(s, mead) imp PktsOld(ReceivePacket(s), med));

theorem PktsOIdPS,
aIl s, m, med ( Pending(s) - = NewOueueOfPacket

and PktsOld(s, mad)
imp PMtsOld(ProtocolSend(s, m), med));

Theorem PktsOIdRP says that if the packets in the medium med are 21d (i.e., with sequence number

not equal to SSN(s)), then they are still old after a ReceivePacket event--the event's effects on the

medium are limited to simply removing a packet. All the remaining packets are unaffected.

5.4.2. Liveness

In order to deal with liveness concerns, we must show that the implementation for each service-

level operation terminates. This is trivial for the user operations, since each is directly implemented

by a single protocol operation assume to terminate. The difficulty comes with the so-called

spontaneous operations. We must show that a finite sequence of internal protocol operations serves

to accomplish the desired effect. Considering the SendComplete operation as an example, an

argument of the following sort is necessary.

1. In (protocol) state S2 (corresponding to service state Sending), the Retransmit operation is
enabled and may place an arbitrary number of packets in the SenderToReceiver medium.

2. In state S2, if one of these packets reaches the receiver, the ReceivePacket operation will
achieve the desired effects of SendComplete (i.e., change the state to S3, corresponding to
ReadyToReceive).

II I - - . ... . . . . . . . . I ... . . . . . . . . . . m ,
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3. If a large enough (but finite) number of packets are transmitted by the sender, one will reach the
receiver.

These three points taken together imply that a finite number of protocol internal operations will

accomplish the SendComplete service operation. A similar argument holds for the ReceiveComplete

operation. Points 1 and 2 follow directly from the axioms for Retransmit and ReceivePacket. Point 3.

however, requires an additional constraint on the simple medium: the number of packets that may be

lost is bounded. As yet, there is no convenient method for expressing such eventual delivery

constraints in Affirm. Our liveness arguments must therefore remain informal. Berthomieu [2 and

Hailpern [19, 20] deal with these concerns.

5.5. Protocol Properties and Invariants
As stated in Section 1.3.2, the essential verification of a protocol involves showing that it meets its

service specification. However, it is also possible to prove properties of the protocol specification

itself, independently of any service specification. In particular, a state invariant similar to the service

requirements discussed in Section 3.6 is worth some discussion. Proving the invariant gives added

confidence that the protocol specification is correct. The system invariant for the Alternating Bit

protocol states that the protocol-level system is always in one of its four valid state classes:
theorem ManSystemlnvariart, all a (InSi (a) or InS2(s) or lnS&" . or InS4(s));

We also note that by the definition of protocol state S1 (in Section 111.2),

InSi (s) D (Sent(s) - Received(s))

This is a protocol-level version of the service requirement.

The system invariant has been proved. The proof makes use of the theorems of Appendix 111.6.

Those theorems essentially detail how the state changes for each possible event. Most say that no

change occurs. As with most abstract data types, much of the difficulty with this proof lies in

developing a suitable invariant. We experimented with several versions of the protocol axioms and

state class definitions before developing the present form.

5.6. Implementation
Having specified the Alternating Bit Protocol and proven that it has some desired properties, we

must provide an implementation that meets these specifications. (See Section 4.3 for a general

discussion.) Our implementation (in Appendix IV) has two stations:

-Sender contains procedures ProtocolSend, SenderTimeout, and InitSender; and

- Receiver contains ReceivePacket, Deliver, and InitReceiver.
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They share the Medium variables SenderToReceiver and ReceiverToSender. Since both stations

have local variables, we need two initialization routines. All other procedures correspond to the

similarly-named events in the protocol specification, except for SenderTimeout. It combines the

Retransmit and ReceiveAck events. Like the events of the specification, all procedures have no effect

on the system if they are called at an inappropriate time.

Program variables correspond to state variables of the specification. Each procedure has an

assertion of the form

VariablesMatch(s, ..vars..) imp VariablesMatch(event(s), ..new vars..)

In other words, for any state s that corresponds to the ini ti values of the program variables, the state

resulting from the listed event will correspond to the variables aftr the routine finishes. (See Section

IV.4.) For example, the assertion DPost (page 55) says "given any state s whose selectors Sent,

ReceiverBuffer, and ReceiverToSender match the corresponding receiver variables, the new state

resulting from a Deliver(s) event will have selectors that correspond to the values of the variables after

Deliver is executed." PSPost (the assertion for ProtocolSend) adds one more stipulation:

ProtocolSend sets a bit to inform its caller vhether it had any effect.

The partial correctness of all these procedures has been proven using Affirm. The proofs were

quite straightforward, using only one lemma about the data type definitions and one lemma about the

protocol specification. Theorem PendingInvariant states that Pending contains no more than one

packet. It was easily proven from the axioms without reference to any other protocol invariants.
theorem SeqMatch(med, bit) imp (-Seqmatch(med, -bit)) and med - a NewQueueOfftcket;

theorem Pendnglnvariant, Remove(Pending(s)) = NewQueueOfPacket;

Since the implementation is in keeping with the specification, its salp& follows from the earlier

proof (in Section 5.4). Liveness has not been formally proven for either level. Any liveness proof must

consider that the implementation does not exercise the full range of event sequences possible under

the specification. (For example, Retransmit is always preceded by ReceiveAck.) Informally, it may be

seen that only ineffective sequences have been excluded, so progress will not be impeded.

-7"
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6. FURTHER APPLICATIONS
This chapter briefly mentions some further work we have accomplished in applying our

methodology to several more complex protocols.

6.1. Stenning's Data Transfer Protocol
The protocol described in [44] ignores the aspects involved in connection establishment, and

instead emphasizes the data transfer aspects. It is designed to operate correctly even though the

channel may lose, duplicate, or re-order packets in transit. It is a generalization of the Alternating Bit

protocol as discussed in Section 5.1, since it allows several messages to be in transit at once.

Stenning defined two processes: a transmitter and a receiver. The transmitter sends messages

from a given sequence of messages to the receiver, using a communication line. The receiver in turn

accepts messages from the line, stores them in an output sequence, and acknowledges their receipt

by sending a message to the transmitter via another communication line. The communication lines

are unreliable; messages traveling in either direction can be lost, reordered, corrupted, or duplicated.

Given such an environment, the protocol is supposed to ensure correct delivery of the messages.

The protocol uses a conventional positive-acknowledgment, retransmission-on-time-out technique,

and the receiver and transmitter both maintain windows of messages. The transmitter's window

contains messages sent but not yet acknowledged. Similarly, the receiver can buffer-ahead

messages received out of order (up to some limit), awaiting receipt of the next expected message.

The Affirm specification of the Data Transfer Protocol, as well as a proposed safety invariant and

documentation of its partial proof, are included in [49].

6.2. Transport Service
The transport service represents a protocol layer allowing many users to exchange data. Users are

identified by port addresses. In order to exchange messages, users must first establish a connection

between themselves by appropriate requests to the system; once this is done, users may exchange

data in both directions independently.

The exchange itself functions as in the data transfer protocol above, but is controlled by the

receiving end (in each direction), through the use of explicit credits, i.e., permission to send one or

more messages. Once users are done communicating, they ask the system to disconnect the

etablished connection.
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We have specified a transport service (but not the protocol implementing the service), and proved

several properties about the specification. The specification is done in two levels. The lower level

describes =n half-duplex connection that knows about the connection status at both ends. The

upper level uses two such half-duplex connections, one for each direction, with a shared connection

status, thus modeling a full-duplex connection between each pair of users. This division permits the

separation of addressing properties from data transfer properties.

Properties proved about this specification show that normal sequences of connection setup and

data transfer commands will have their anticipated effects. An interesting detail discovered during

these proofs was that the specification precluded a user from establishing a connection with itself.

Complete details of the specification and proven properties may be found in (411.

6.3. Selective Repeat Transport Protocol

A transport protocol similar to Stenning's is specified in [3]. It involves the transfer of messages

between a sender and a receiver over an unreliable medium (it may lose messages, but not reorder

them). The sender has a window of messages that have been sent but not yet acknowledged. If the

acknowledgment does not arrive within a certain (fixed but arbitrary) time, the message is considered

to have been lost and is retransmitted. This protocol is proven to be partially correct with respect to

the property of "correctly transferring data across the medium."

Progress properties and their characterization in Affirm are examined in [2]. In particular, an

extension of Floyd's "well-founded set" method [8] is used to show the termination of a data transfer

protocol.

6.4. Connection Establishment Protocol
A protocol to provide the kind of connection-establishment service described in Section 6.2 has

been specified in [43]. The protocol modeled in that paper is the three-way handshake used in the

ARPANET TCP algorithm. Although the protocol has not been verified against a complete service

specification, several interesting properties have been proved. Work is continuing.



36

7. PROBLEMS AND EXTENSIONS
While we feel that we have had considerable success in handling protocols with Affirm, several

areas need further work. In this section we briefly discuss problems encountered and possible

extensions.

7.1. Composition of Specifications
Given that a protocol layer is composed of several interacting stations, it is reasonable to specify

the behavior of each station separately, i.e., by presenting its Ioa view of the rest of the system [42].

In a second step, these several local views could be combined to specify the overall behavior of the

layer.

At present, the techniques described in the previous sections do not allow the straightforward

composition of such specifications; all specifications thus far have described systems from a alobal

reference point.

7.2. Concurrency

A protocol layer supports several users, and may receive simultaneous requests for service from

them (e.g., one side is sending a long message while the other acknowledges a previous message). A

fully adequate specification method should allow for concurrent operations for both service

specifications and protocol specifications. Furthermore, since the stations composing the layer

operate independently, the verification method must be able to analyze systems with concurrently

executing components.

A basic assumption of most state transition models is that the transitions are atomic, serial

operations. This assumption is carried over to the Affirm specifications where the axioms define the

effects of each atomic operation (constructor function). However, this limitation is not as serious as it

might at first appear, because by defining operations with a small enough grain the assumption of

atomicity is reasonable. For systems with several independent components, the effect of

concurrency can be approximated by considering all possible interleavings of the operations of each

component.



EXCEPTIONS 37

7.3. Exceptions
The main purpose of a protocol specification is to define allowed or normal sequences of

operations and their effects. Unfortunately, it is a fact of life in the protocol world that users

occasionally issue invalid commands, and even protocol stations send inappropriate messages to

each other. Thus it is inadequate to state merely that the protocol behavior is undefined for invalid

inputs, or that some unspecified party is responsible for guaranteeing that inputs are valid. A richer

vocabulary for specifying the handling of such exceptional conditions should be supported,

including:

1. ignore invalid inputs (i.e., they have no effect),

2. reject them (i.e., they have no effect, but an error indication is returned to the requesting party),
and

3. enter an error-recovery portion of the protocol.

Axiomatic specification methods have difficulties with (2) and (3), and the example protocol

specifications prepared in Affirm to date have been limited to ignoring invalid inputs, or simply not

defining the results. Several methods to extend axiomatic techniques to handle exceptions have

been proposed, but we have not yet determined the best way to proceed in Affirm.

7.4. Specification and Verification of Systems with More than Two
Interacting Entities

So far, we have considered only protocols that involve essentially two interacting entities over a
transmission medium. This covers a large number of protocols in current use. Nevertheless, there

are protocols involving more than two interacting entities (e.g., routing in packet.switching networks).

It appears that the techniques discussed in this report can be applied to the specification of these

protocols as well, but we have not done it.

As one would expect, there is a combinatorial explosion on the number of possible states of the

system. It is at this point that the ability to decompose the overall system description into the

description of its components becomes crucial, since it allows the analysis of the behavior of the

system through the analysis of the behavior of its components. We are investigating extensions of our

techniques to handle such situations.

i gt
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7.5. Higher Level Protocols
The main application of formal specification methods to protocols has been at the data transfer

level, where the first concerns are overcoming message loss, damage, and reordering. Much less

work has been done on formally specifying higher level protocols that focus more on translation into

and out of canonical forms (e.g., a virtual terminal or file). Furthermore, the operations to be specified

are more specialized to the area of concern of the protocol (e.g., graphics, terminal handling, speech

compression) than to general data transfer. It remains to be seen whether the same methods are

applicable at these higher levels, or whether a new set of abstractions (e.g., involving canonical

forms) will be more suitable.

. .. . . . -4 . . . . . . . . . . . . . .. . . . - "
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8. CONCLUSION
We have chosen to combine the state transition model and abstract data type approaches for

several reasons. First, we have a strong methodology and a rapidly evolving, powerful supporting

tool: Affirm. A natural question is whether such a methodology can accommodate a diverse set of

formalisms and modeling methods.

This question first arose in conjunction with a toy Security Kernel [29], where we were presented

with a state transition specification of an operating system kernel with operations such as

SwapProcesses and RaiseBlockLevel. It was quite natural to represent the specification as a data

type and then do an induction proof of an important invariant about relative block and process levels.

We then applied the same method to protocols and have, on the whole, been quite satisfied. Its

limitations are touched upon in Chapter 7, but within these limits we have conducted a broad

exploration of several protocol issues.

All methods have limitations. Some of the limitations of other methods are handled nicely in our

approach. For example, we have no problem with unbounded objects, which cause difficulties for

finite-state modeling approaches. However, we lack the decision ability of algorithms based on finite-

state exploration and its ability to simply reveal errors.

Another advantage of our approach is the capability to exeut specifications: axioms have a

natural rewriting rule representation that we exploit. That is, we can take a set of axioms, plug in

special values, and see where the rewriting leads. The determinism and executability of axioms is an

aid in evaluating the accuracy of specifications, independent of their ability to support proofs. This

advantage has been exploited in [43].

Our method also leads naturally from specification to verification, using the standard data type

induction methods. No further mechanisms were needed to adjust Affirm to state transition

specifications, although a "front-end" to handle our stylized type specifications would be useful.

In conclusion, a basis has been laid for further steps toward practical specification and verification

of not just protocols, but also of any system expressible as a state transition machine. Experience

indicates that real protocols can be handled [42]. The major remaining task is to consolidate

techniques for proving progress and liveness.
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APPENDIX I
DATA TRANSFER SERVICE SPECIFICATION

The service specification uses three auxiliary data types: ControiState, a simple enumerated type

with four constants (specified in this appendix), Message, a type about which we make na

assumptions (except the standard one: there is an equality operation on the type), and

QueueOtMessage, an instantiation of the generic Queue&fElem Type type from the Affirm type library

[50; Vol.lllJ.

The following text is in exactly the form in which it would be submitted to the system, except for the

use of multiple fonts. In particular, the "no change" axioms deleted from the axiom sets of the

stylized state machine description on page 15 are included here.
type SimpleMessageSysiemt

needs types Mesage QueuefMeasage, ControiState;
declares : Slmnplsh~easagaSystem;
declare m: Massage;
into rf ace Stals(s): ControlState;
interfaces

Sent(s), Received(s), Buffer(s): Queusoesseiage;
interf aces

InliaizeService, UserSend(s. in), SendComplete(s), UserReceive(s), ReceiveCompletes): Simplelwilesagestemn;
interface Induction(s): Boolean;

axioms
St@A(Lwend(s, mn)) .uIt Stale(s) -ReadyToSend

the Sending
else stats(s),

Stats(SendCoinplele(s)) a= zN State(s) a Seniding
then ReadyToReceive
else state(s),

Stale(UserPACelv*0) NuI State(s) a ReadYToRecelve
t1en Acking
elms ttews).

State(ReceiveConiplete(s)) a5 aN State(s) z Acking
the ReadyroSend
ee State(s),

State(InitializeService) amReadyrollend;

axioms
Sent(UaerSend(s, mn)) unIf State(s) - ReadyToSsrid

the Sent(s) Add m
el sent(s),

Ssnt(SendComplteW)) a a Sent(s),
s~ntuaarpeceive(s)) a u Sent(s),
Sent(RecelveComplete(s)) -ma Sent(s),
Sent(lNltallzeService) muNew~ueue~fMessage;
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axioms
Received(User~mnd(s. in)) .=Received(s),

Rec.ived(SendCOinPlete(s)) - u Received(s),
Recelved(UamrRscaive)) . . Nt Stats(s) . eAdyToRecolve

than Receved(s) Add Front(Bufter(s))
else Received(s),

Recelved(RecelveCompletes)) w - Received(s),
Recelved(inhtilzeService) = NewOueue~tMsssage;

axioms
Buffer(UmeSend(s, in)) muit Stats(s) - ReadyToSend

then Buffer(s) Add m
else Buffer(s),

Buffer(SendCompketes)) - u Buffer(s),
Buffer(UserReceive(s)) = w BufferMs)
Buffer(ReceiveComplete(s)) = if State(s) = Acking

then Remove(Buffer(s))
else Buffer(s),

Buffer(InltiallzeSerice) uuNewOueueOfMessge;

schema Inductions)
mucasee(Prop(nltiaIizeServicO),

all a. in (H(s) Imp Prop(UserSend(s. in))),

all s (IN(s) imp Prop(SendCoinplete(s))),
all s (IN(s) imp Prop(UserReceive(s))),

all s (IH(s) imp Prop(ReceiveConmplete(s))))
end (SimpleMemSeSysiem);

type ControiStale (An enumerated type, with four distinct constants.)
decla're a: ControlState;
interfaces

ReadyToSend, Sending, ReadyTaReceive, Acling: ControlState;
axioms (These axioms state that all the constants of this type are distinct)

cs = ce z z TRUE,
ReadyToSend xSending a = FALSE.
ReadyToSend z ReadyToReceive a z FALSE,
ReadyToSend a Acking = a FALSE,
Sending a ReadyToSend z z FALSE,
Sending a ReedyToReceive . a FALSE,
Sending a Acldng a a FALSE,
ReadyToRecelve a ReadyToSen" FALSE,
ReadyToReceive . Sending . a FALSE,
ReadyToReCelve z Acking a a FALSE,
Acking a ReadyToSend a z FALSE,
Acking a Seniding w a FALSE.
Acking a ReadyToReceive muFALSE;

end (ConlrolSh2Ie);

type Message, (A type about whih iw make the absolutely minimal assumptions: there 11 an equality relation.)
declare in: Message;
axiom m am a a TRUE;
end (Message);
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These axioms are in exactly the form in which they would be submitted to Affirm; see Appendix I
for an explanation of how their form differs from the earlier, stylized, presentation. The auxiliary types
Message, Packet, Medium, Bit, and QueueOfMessage are also listed here.
type ARProlocol;

needs types Measage, Packet QueueOlMessagie, QueueOf Packet, Medium, Bit,

declaresa. s AfProtocol,
declare m. mm: Masnage;
declare'med: Medium;
declare packetq: OueueOfPacket;
declare pitt: Packet;

Interfaces
Sent(s), Received(s), Text(packetq): QususOlMessage;

Interfaces
SenderToPecelver(s). RlecelverToSender(s): Medium;

interifaces
Pacelve.Suffer(s). Pending(s): QueueOlPacket

Interfaces
lnitialSequenceNumber, 5514(s), RSN(s): Bit;

Interfaces
InitiallzeProtocol. Deliver(s), ProtocolSend(s. in), Receivefacket(s),
RecelveAck(s), Retransmitl(s), LosePacket(s), LoseAck(s): ASProtocol;

interfaces
NormalForm(s), Induction(s): Boolean;

axiom a = a .. TRUE;

axioms
Ssnt(Proloco~end(s, N NsI Pending(s) a New~ueue~fPacket

tven Sent(s) Add m
slee Sent(s),

89nt(ReceiePacket(s)) uuSent(s),

Sent(ReceiveAck(s)) -. -Sentls),
Sent(Oelliver(s)) - - Sent(s).
Sent(Retranurnll(s)) usSent(s).

Sent(Lossfcket(s)) .uSent(s),

Sent(LoeeAck(s)) - - Sent(s).
Sent(InitiailnProtocol) a.New~ueusafMessage;
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axioms
Received(ProtocOlSnd(5, in)) = = Receiveds),
Received(ReceivePacket(s)) = w Received(s),
Received(ReceveAck(s)) ==Received(s),

Received(Deliver(S)) = i RecelverSuffer(s) =New~ueueOf Packet
then Received(s)
else Received(s) Add Text(Front(Receiver~uffer(s))),

ReCeived(Retransmit(s)) ==Received(s),

Received(LosPacket(s)) ==Received(s),

Received(LossAck(s)) a z Received(s),
Received(initializoProtocol) ==New~ueue~fMesaage;

axioms
Text(NewOueueOfPacket) ==New~ueue~fMe.sage,

Text(packetq Add pkt) ==Text(packetq) Add Text(pkt);

axioms
SenderToReceiver(ProtocolSend(s, in)) = i Pending(s) z New~ueue~f Packet

then Tranismit(SenderToReceiver(s), MakePacket(in, SSN(s)))
else SenderToReceiver(s),

SenderroReceiver(ReceivePacket(s)) =Receive(SenderToReceiver(s)).

SenderToReceiver(ReceiveAck()) = = SenderToReceiver(s),
SeriderToRecoiver(Deliver(S)) = = SenderToReceiver(s),
SenderToReceiver(Retransmit(s)) R i Pending(s) = New~ueue~f Packet

then SenderToReceiver(s)
else Transinit(SenderToReceiver(s), Front(Pendines))).

SenderToReceiver(LosePacket(s)) z z Receive(SenderToReceiver(s)),
SenderToReceiver(LoseAck(s)) = z SenderToReceiver(s),
SenderToReceiver(nitializeProtocol) z= InitializeMedium;

axioms
ReceiverToSender(ProtocolSend(s. in)) = = ReceiverToSender(s),
ReceiverToSernder(ReceivePacket(s)) = = If SenderToReceiver(s) - = InitializeMedium

and ReceiverBuffer(s) = New~ueueOf Packet
and RSN(s) - = Seq(Front(SenderToReceiver(s)))

then Transinit(ReceiverToSender(), Front(SenderToReceiver(s)))
else ReceiverToSender(s),

ReceiverToSender(ReceiveAck(s)) z = Receive(ReceiverToSender(s)),
ReceiverToSender(Deliver(s)) =if Receiver~uffer(s) = NewOueueOf Packet

then ReceiverToSender(s)
else Transi(ReceiverToSender(a), Front(Receiver~aifferis))),

RoceiverToSender(Retransnit(s)) = ReceiverToSender(s),
ReceiverToSenider(LosePacket()) ==ReceiverToSender(s),

ReceiverToSenider(LoseAck(s)) = Receive(ReceiverToSender(s)),
ReceiverToSender(InitiaizeProtocoI) = InitializeMedium;

axioms
Receiver~uffer(ProtocolSenid(s, in)) ==Receiver~uffer(s),

ReceiverBuffer(ReceivePacket(s)) ==If Seq(Front(SenderToReceiver(s))) a RSN(s)
and SenderToReceiver(s) - a InitializeMedium

then New~ueue~f Packet Add Front(SenderToReceiver(s))
else Receiver~uff er(s),

Receiver~uffer(RecelveAtk(s)) .=Receiver~uffer(s),

Receiver~uffer(Deliver(s)) a=NewOueueaftcket,
RecelverSuffer(Retransit(s)) a a Receiverufer(s),
Receiverliuffer(Loeftcket(s)) a RseieveiBuffer(s),
Receivwrufer(LoeAck(a)) aReceiver~uffer(s),
Pecelver~uffer(IntlalizeProtocol) unNewQueupofPacket;
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axioms
Pending(Protocoi~end(s. in)) uN Pending(s) a New~uoeef acket

the NewOususOf Packet Add MakePacket(m. SSN(s))
eas Pending(s).

Penn(Receive~cke~s)) =aPending(s).

Pendlng(Receivefck(s)) I Seq(Front(ReceiverToSeners))) =SSN(s) and ReceiverToSender(s) - = nftinAiiedium
then New~ueueUlPacket
else Pending(s).

Pencling(Delkivrs)) a.Pending(s).

Pendling(Retransmit(s)) -=Pending(s),

Pendling(LoaePacket(s)) = Pending(s),
Pending(LoaeAck(s)) =uPending(s),

Pending(initializeProtocol) ==New~ueueOf Packet;

axioms
SSN(ProtocolSendl(s in)) ==SSN(s).

SSN(RecelvePacket(s)) a = SSN(s),
SSN(ReceiveAck(s)) z a if Seq(Front(ReceiverToSender(s))) =SSN(s) and ReceiverToSender(s) -= InitializeMedium

then -SSN(s)
eime SSN(s),

SSN(Deliver(s)) a.SSN(s).

SSN(Retranamit(s)) ==SSN(s),

SSN(LosePacket(s)) ==SSN(s).

SSN(LoseAck(s)) = = SSN(s).
SSN(initializeProtocol) = nitialSequenceNumber;

axiom$
RSN(ProtocolSend(s, in)) = = RSN(s),
RSN(Receivefacket(s)) = - Nt Seq(Front(SenderToRece'ar()) RSNfs) and SenderToReceiver(s) -= Iitialize~eiuin

then -RSN(s)
else RSN(s).

RSN(ReceiveAck(s)) =uRSN(s),

RSN(Delive(s)) - - RSN(s),
RSN(Retransmit(s)) a:RSN(a),

RSN(LoePacket(s)) muRSN(s),

RSN(LoeeAck(a)) = a RSN(s),
RSN(lnftializaProtocol) ==InitialSeqluenceNumber;

scheme
NormalForm(s) =.casee(Prop(initializeProtoco),

all as, mm (Prop(ProtocoiSend(s mm))),
all as (Prop(ReceivePacket(ss)))t
all as (Prop(RecoiveAck(s))),
all as (Prop(Deliver(a))),
all as (Prop(Retransmitgas))),
all as (Prop(LoeePacket(as))),
all as (Prop(LoeeAck(ss)))),

Indluction(s) a:casee(ProponitializeProtocoD,

all as mm (IH(ss) imp Prop{ProtocolSend(as, mm))),
ali as (IH(ss) Imp Prop(ReceivePacket(as))),
all as (IH(ss) imp Prop(ReceiveAck(ss))),
all as (IH(ss) imp Prop(Deliver(as))),
alia (lH(ss) imp Prop(Retranamit(as))),
all as (IH(as) imp Prop(LosePacket(ss))),
all as (H(ss) imp Prop(LoseAck(s))));

end {ABProiocol);
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type Medium:

needs type Packet;

declare m. ml. m2: Medium
delsato pkt, picti, pkt2: Packet;

Interfaces
lnitializeMedium, Transmit(m, pkt). Receive(m). Loee(m): Medium;

interface Front(m): Packet;

interfaces
Empty(m), pet in m, Induction(m): Boolean;

infix in;

axioms
Mm a M TRUE,
Transmit(m, pkt) = InitializeMedium - = FALSE,
InitializeMedium = Transmlt(m, pkt) = = FALSE,
Transmit(ml, pi) aTransmit(mn2, pkt2) z z ((ml =m2) end (pktl =pkt2));

axioms
Receive(InitializeMedium) = x InitializeMedium,
Receive(Transmit(m, pktl,) x= ii m z Initialize~eium

ten lnitializeMedium
else Transmit(Receive(m), pkt);

axiom Loee(m) = Receive(m);

axiom Front(Transmit(m, pet)) = = it m z Initializelvedium
then pkt
elm Front(m);

axiom Empty(m) x a (m a InitializeMediumn);

axioms
pict In InitializeMedium a z FALSE,
pet in Transmit(m, pkti) =((pkt = pktl) or pet in in);

schema lnduction(m)
==cases(Prop(niializelfedium),

all mn, pkt (114(m) imp Prop(Transnit(m, pkt))));

end (Medium);
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type Bit.

declare b, bi, b2: Bit;

interfaces
on, off, -bi: Sit;

Intoerface NormaForm(b): Boolean;

axiom -- b==b;

axiomns
bab a z TRUE,
on a a -= FALSE,
off a on a a FALSE,
bl= -b2= =bl -b=2,
-bl ab2 . zbl-= b2;

schema NormalForm(b) a z cases(Prop(on), Prop(off));

end (Bill;

type Mtessage: (A type about which we make the absolutely minimal assumptions: there an equality relation.)

decla rem: Message;

axiom m -m a= TRUE;

end (Message);

type Packet;

needs types Message, Bit;

declar e pict: Packet;
declare b, bi, b2: Bit;
declare m. ml. m2: Message;

interface MakePacketgm, b): Packet;

Inte rface Seq(pkt): Bit;

Inte riace Text(pkt): Massage;

axiom*
plctzupt z z TRUE,
MakePacket(ml, bi) = MakePacket(m2. b2) z ((ml a m2) and (bI b2)

axiom Seq(MakePacket(m, b)) z b;

axiom Text(MakePacket(m, b)) z z=m

end (Packet);
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type QueueOliessage,

needs type Message;

declare q. q1, q2, qq: OueueOftvessage;
declaresi. ii, Q., ii: Message;

interfaces
New~ueueOlMessage, q Add i, Remowe(q), Append(ql, q2), que(i): QueueUfMessage;

infix Add;

interfaces
Front(q), Back(q): Message;

interftaces
NormalForm(q), Induction(q), i in q: Boolean;

infix in;

axioms
q=q =TRUE,

q Add i NewQueue~f Message = = FALSE,
New~ueue~fMessage = q Add i = = FALSE,
q1 Add il = q2 Add i2 = = ((ql = q2) and (ii = i2));

axioms
Remove(New~ueueOfMessage) = NewOueueOf Message,
Remove(q Add iQ= if q = New~ueueOfMessage

then q
else Remove(q) Add i;

axioms
Append(q, NewOueueOfMessage) q,=
Append(q, q1 Add ii) = = Append(q, q1) Add il;

axiom que(i) = = NewOtaeueOfMessage Add i;

axiom Front(q Add I)2=if q = NewQuieue~fMessage
then i
else Front(q);

axiom Back(q Add i) = =

axioms
i in NewaueueOf Message = FALSE,
i in (qAdd il) = (i in q or iil));

rulelemma Append(NewCueueOfMessage, q) q;2

scheme
NormalForm(q) =2cases(Prop(NewOueueOfkesaage).

all qq, ii (Prop(qq Add ii))),

induction(q) =case9(Prop(New~ueue~ftftssage),I all qq. ii (IH(qq) imp Prop(qq Add ii)));

end {QueueO]MeSSage),
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A APPENDIX III

SERVICE AXIOMS --- PROTOCOL THEOREMS
This appendix contains the corresponde~nce between the service and protocol specifications of the

Alternating Bit protocol, and lists the theorems generated as part of the job of proving that the

protocol Implements the service. These theorems have been proved using Affirm. The proofs are

documented in [51]

* 111.1. The Correspondence between the Service and the Protocol
* declare s: A8Protocol;

declare m: Message;

* interface rep(s): ABProtService;

1. InitializeService ==rep(lnitializeProtocol)

2. Sent srne(rep(s)) = Sent Dool(s)

3. Receivedsevice(rep(s)) = = Receivedprotoco (s)
4. Buffer(rep(s)) = Text(Front(Pending(s)))
5. State(rep(s)) = if InSi (s)

then ReadyToSend
else if lInS2(s)

then Sending
else if InS3(s)I

else Acking
6. UserSend(rep(s), m) ==rep(ProtocolSend(s, in))
7. Receive(rep(s)) = = rep(Deliver(s))
8. SendComplete(rep(s))

= = rep({ LosePacket LoseAck Retransmit ReceivePacket ReceiveAckl' (s))
9. ReceiveComplete(rep(s))

==rep({LosePacket LoseAck Retransmit ReceivePacket, ReceiveAck)* (s))

111.2. Correspondence of States Between Service and Protocol
The four states in the service specification, Ready'roSend, Sending, ReadyToReceive, and Acking,

correspond to four states in the protocol specification, labeled S1, S2, S3, and S4. The predicates in

the protocol specification defining these states are defined in Affirm as follows.
InSl(s) (ReadyToSend)

==( Pending(s) =New~ueueOf Packet
and ReceiverBuffer(s) =New~ueueOf Packet
and Sent(s) aReceived(s)
and Pkts~d(s. SenderToReceiver(s))
and Pkta~d(s, ReceiverToSender(s))
and RSt4(s) SSN(s))
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InS2s) (Sending)
(Peniding(s) -zNewOueueO(acket

and Receiverfuffer(s) =NewOugugOf Packet
and Sent(s) =Received(s) Add Text(Front(Pending(s)))
and PktsCurrentOrOld(s, SenderToReceiver(s))
and Pkcts~ld(s, ReceiverToSender(s))
and RSN(s) =SSN(s))

InS3(s) {ReadyToReceive)
-=( Pending(s) - = NaWQueue0fPaCket

anid ReceiverBuffer(s) = Pending(s)
and Sent(s) a Received(s) Add Text(Front(Pending(s)))
and PktsCurrent(s, SenderToReceiver(s))
and P1ktsO~d(s. ReceiverToSender(s))
and RSN(s) - = SSN(s))

InS4(s) (Acking)
-=( Pending(s) - = New~ueueOf Packet
and ReceiverSuffer(s) = New~ueueOf Packet
aNd Sent(s) = Received(s)
and PktsCurrent(s. SenderToReceiver(s))
an PktsCurrent~rOtd(s, ReceiverToSender(s))
anid RSN(s) - = SSN(s))

111.3. Example: Mapping Two Service Axioms into Protocol Theorems
Service axiom

Received sevce (UserSend(S, in)) = Received service(S)

use S =rep(s)
Received srvice (UserSend(rep(s), in)) = Receivedservice (rep(s))

use 6
Received srie(rep(ProtoColSend(s, mn))) = Receivederic(rep(s))

use 3
Received protoco (ProtocolSend(s, mn)) = Receivedprotoco, (s)

Service axiom
Sent serice (UserSend(S, in)) = if State(S) = ReadyToSend

then Sent ce(S) Add m
else Sentservice(S)

use S a rep(s)
Sentservice(UserSend(rep(s), Mn)) =if State(rep(s)) -ReadyToSend

then Sent -0 *(rep(s)) Add m
else Sentsevice(rep(s))
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use 6
*Sent servi(rep(ProtocolSend(s, in))) = if State(rep(s)) =ReadyToSend

then Sent (rep(s)) Add mn
else Sent ~(rep(s))

use 2
Sentprotocol(ProtocoISend(s, in)) = if State(rep(s)) = ReadyToSend

then Sent 0 0 0 (s) Add m
else Sentprotocol(s)

use 5
*Sentprotocol(ProtocolSend(s, in)) = if InSi (s)

then Senltprotocol(s) Add mn
else Sentprotocol(s)

111.4. Effects on State Variables by !.Luo Operations
(for the Send operation:)
theorem SS, Sent(ProtocolSend(s, in)) = if InSl(s)

then Sent(s) Add m
else Sent(s);

theorem RS, Received(ProtocolSend(s. in)) = Received(s);

theo remn 8S, Text(Pending(ProtocolSend(s, in))) = iN InSi (s)
then Text(Pending(s)) Add m
elseTextPendingis));

(for the Receive operation:)
theorem SR, Sent(Oellver(s)) = Sent(s);

theorem RR, Received(Oefiver(s)) = N InS3(s)
then Received(s) Add Front(Text(Pending(s)))
else Received(s);

theorem BR, Text(Pending(Deliver(s))) = Text(Pending(s));

(for the InihalzeProtocol operation:)

theorem SI, Sent(initializeProtocol) = New~ueue~f Message;

theorem RI, Recelved(initlallzeProtocol) z New~ueueOf Message;

theorem SI, Text(Pending(initlallzeProtocol)) =NewOueueOtMessage;

theorem TI, InSI(InltializeProtocol);
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111.5. Effects on State Variables by Sontaneou Operations
(for the Sent state variable:)

theorem SentSpont,
adSent(LoseieAck(s)) = Sent(s)

and Secev(ReceivePacket(s)) = ecve(s)
and Renev(Retransmit(s)) S eceivd3 s
and Recev(LosePacket(s)) S eceivds s
and Recev(LoseAck(s)) = ecve(s);

(for the BuRerve state variable:)
theorfer Butt eSpont,

imp Pendin(Receivefk(s)) = Pedn~)ad-n4Receivec(s))
and Pendingd(ReceivePacket(s)) = Pedn~)d-n4Receiveake(s))
and Pendingd(Retrasmit(s)) R enevd(s)an-nS(tasiis)
and Pendive(LosePacket(s)) = enevd(s)an nSLseclts)
and Pendive(LoseAck(s)) = Peeend(s);ad-n4Ls~ks

theorem ButterSpontl,
-nS(s)

imp Pending(ReceiveAc(s)) = Pending(s) and -1nS4(ReceiveAck(s))

and Pending(ReceivePacket(s)) = Pending(s) and -n4(ReceivePacket(s))
and Pending(Retransmit(s))= Pending(s) and InS4(Retraismit(s))
and Panding(LosePacket(s)) Pending(s) and InS4(LosePacket(s))
and Pending(LoseAcc(s)) = Pending(s) and InS4(LoseAck(s));

(fthee Puroto~nt2peaio:

InS(s) ipIS(rtcleds n)

th m pScc (PN chngRe InS2t(s)) m I n(iotcosend~s In));ceefk~

(for~o the ReIv~ce Opeation:~))
taene Sluc2eNo cng.) Inve~ce(s)) m endigs adl(ReceivePacket(s))

tande S2uc2eNo cnge, rnmoves) f=o stendngs tod IStaetrnsit
and e2in(s m n2ePacket Pedn(s) or InS(eceiePacket(s))

theorem S3Succ2,( chage InS(s)Iprooc1n3(Reclveac)); )

theoemr SlSucc2, (No change) InS4(s) imp InS4(ReceivePacket(s));
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(for the Rcelv*Ack operation'.)
theorem SlSucc3. (No change) InSI(s) imp lnSl(ReeleAck(s));
theorem S2Succ3, {No Chang*) ln82(a) imp In82(ReeveAck(s));
theo rem S3Succ3, (No change) lnS3s) imp InStl(Receivefck(s))

theorem S4Succ3, (No change, or move from state.L4.to state WJ
InS4(s) imp ln.S4(ReceiveAck(s)) or lnSl(Receivefck(s));

(lot ft Deliver operation')
theorem SISucc4, (No change) InSi(s) imp InSl(Deliver(s));
theorem S2Succ4 , (No change) InS2(s) imp lnS2(Deliver(s));
theo rem S3Succ4 . (No change) InS3(s) imp In84(Dellver(s))
theorem S4Succ4 , (No change) InS4(s) imp InS4(Deliver(a));

(for the Retransmit operation:)
theorem SISuccS. (No change) InSi(s) imp InSl(Retransmit(s));
theo rem S2Succ5. (No change) InS2(s) imp lnS2(Retransmit(s));
theorem S3Succ5, (No change) InS3(s) imp InS3(etransmit(s))
theorem S4Succ5, (No change) InS4(9) imp In84(Retransmit(s));

(for the LoseAck operation:)
theorem SlSucc6, (No change) InSi(s) imp lnSl(LoseAck(s));
theorem S2Succ6, (No change) InS2(s) imp InS2(LoseAck(s));
theo rem S3Succ6, (No change) InS3(s) imp InS3(Loeftk(s));
theorem S4Succ6, (No change) In84(s) imp In84(LoeAck(s));

(for the LoePacket operation:)
theorem SlSucc7, (No change) InSl(s) imp InSl(Loefcket(s));
theo rem S2Succ7. (No change) In82(9) imp InS2(LosePacket(s));
theorem S3Succ7, (No change) InS3(s) imp InS3(Loseefcket(s));
theorem S4Succ7, (No change) In84(s) imp InS4(Loseftcket(s));
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APPENDIX IV
IMPLEMENTING PROCEDURES AND ASSERTIONS

IV. 1. Asserted Procedures for the Sender
norougj~ra Sender(ur SenderToReceiver.ReceiverToSender: Medium);
(This is an environment for the send operations ProtocolSend and SenderTimeout.

It has no body and no assertions.)

NLPending: QuoueOtPacket: jU Sent:QueueOtMossage; XIL SSN:Bit;

arour ProtocolSend(m:Message; Xur success:Boolsen)
* ~Impodta(var Sent.:OueueOtMeeage; var SenderToRechver Medium var Pending: Quo&'e~tPacket; SSN:- Bit);

post PSPost Cm, success, Sent, Sent'. SenderToRecslver. SendarToRecelver' Pending. Pendlng. SSN);

(does a ProtocolSond(p,m); sots success bit If we, did something. Note
that HeceivorToSender is not imported.)

~jgjj (ProtocolSond)
ILt Empty(Pending) MWu

Pendlng:u quo(MakePack~t(m.SSN));
SenderToReceiver:- Transmit(SenderToneceiver.Front(Pending)).
success:u TRUE;
Sent:z Add(Sont. in);

91*success:s FALSE;
S(ProtocolSend);

procedur SenderTimeout
importa(var SenderToRecelverRecelverToSender: Medium,

var Pending: Queue,0t12cket, var SSN: Bit);
post Sl Post(SenderToRecelver SendeTopecever', RecelvorToSender

RecelverToSonder'. Pending, Pending'. SSN. SSN');

(Performs a Retransmit(ReceiveAck(p)))
fl~jU (SenderTimeout)

It Seq~atch(RecelverToSender.SSN) (includes test for Empty)
Thin (got a valid Ack)

Pending: sRomove(Pending);
SSN:8 -SSN;

ReceiverToSender := Receive(ReceiverToSender);
.1± -.Empty(Pending) Than

SenderTofleceiver :- Transmit(SenderToRciverFront(P~nding));
Ig (SenderTimeout);

proceure InitSender
lmport,(var Pending: Queue QiPacket; var SSN:B1t);
post ISPost(SentPendlng.SSN);
kaia

Sent: * New~ueueOf~essage;
Pending: = NowQuuoOfPecket;
SSN: £ InitialSequenceNumber;

Ing (InitSender);

flgj.t (Sender has no body); 9.fl;

:iiO
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IV.2. Asserted Procedures for the Receiver
procedure Receiver(uMr SenderToReceiver, RoceiverToSender: Medium);

y.sLr Out: QueueOMessage;
Yjj RSM:Bit;.
yM Receiver~uffer: QueueOfPacket;

kughedrt* ReceivePacket
imports(var SenderToReceiverReceiverToSender- Medium. var RSN.- Bit; war RecoiverButier.: OueusOtPacket)
post RPPost( ReceiverS utter. ReceiverS utter' sondrToRecelvor SenderToRoceivor',

ReceiverToS ender, ReceiverToSender'. RSN. RSN);

(Doesn' 't deliver. just places in ReceiverBuffer. Only Acks after delivery)

.Seqlatch(SenderToReceiver.RSN) IMM

(Something we were waiting for. Accept, prepare to deliver.
Won't Ack until delivered) i
ReceiverBuffer :* que(Front(SenderToReceiver));

til SoqMatch(SenderToReceiver.-RSN) and Empty(Recelvereuffer) then
(Having delivered, we ACK when requested for the last packet)
ReceiverToSender : = Transmit(ReceiverToSender.

Front(SenderToReceiver))
I"; (that's all for ReceivePacket)

prcedure Deliver
Import3(var Out: Ouou*OiMeaaage; vat ReceiverToSender Medium;

vat Receiverfiuff er.: QueOPacket);
post DPost(Out. Out, Receive rBu tier, Recoiver~utr', ReceiverToSender,

RoceiverToSender');

IL -Empty(Receivereuf for) Thn
Out :a Out Add Text(Front(Roceiverluffer));
ReceiverToSender:= Transmit(ReceiverToSender. Front(Receivereuffer));
ReceiverBuffer: = NewQueueOfPacket;.

ji;(I" of Deliver)

prcdureL InitReceiver

importulvar RSN.Bt; var ReceiverButter: QuoueOtPacket);

Out:a NewQueu*OfMssage;
RSN:m InitialSequencellumber;
ReceiverBuffer: = NewQuuoOfPacket;

I"l (Initfleceiver);

bginJ; (Receiver has no body) jIU;
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IV.3. Definitions for the Assertions
define Opost(sent ' ent. rbuf', rbuf ,rs', rs) *

all s( RscelverVarsMatch(s~sent~rbuf.SmnderToRecelver(s).rs.RSU(s))
imp
RecslverVarsMatch(Dellver(s).sent .rbuf' ,SenderToReclvsr(s).

rs' .RSN(s)));

define RPPoat(rbut',rbuf.sr'.sr.rs'.rs,rsn',rsn)
all 3( RocelverVarsMatch(s.Recelved(s),rbuf.

atr.r an)
imp
ReceiverVarsMatch(RsceIvePacket(a),Received(s), rhuf',

sr' IS ,rsn'));

define lRPoet(out.rbufrsAn)
some sr.rs( ReceiverVarSMatCh( Initial izeProtocol.

out, rbuf.sr~.rs~tn));

def ine STPost(ar'.sr~ra'.rs.pendlpend~asn'.ssn) w

all s( SenderVarsMatch(s,Sent(s).pend.sr.rs.ssn)
imp
SenderVarsMatch( Rotransmit( RocoiveAck( a)).

Sent(s).pend'.sr.rs,ssn'));

define PSPost(msg. succ. sent*.sent,sW sr. pond' pend. ssn) -

all s( SonderVarsMatch(s.sent,pend~sr.RecelverToSender(s).ssn)
imp
SenderVarsMatch(ProtocolSend(s.msg),

sent .pend ,sr'.ReceiverToSender(s),ssn))
and succ a Empty(pend);

define ISPost (sent, pond, ssn)
some sr.rs(

SenderVars~atch(InltlalizeProtocol,sent~pend.s,rs.ssn));.
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IV.4. Context In Which the Assertions are Defined
type ASContezt;

declare s.s'.st.s2 :ABProt5;
declare msg -Meanage;
declare sent.sent .out.out* :QueOt0messag*;
doctor* qp~p~nd.pend .rbu?.rbuf" QueueOlPacket.
doctar* sr~sr'.rs.rs'.s2r~r2s :Medium;
declare rsn~ssn~rsn'.ssn' :am1;
declare b,succ~succ' :Booleanl;

intoerface SenderVarsMatch(s.sent~pend~sr,rs.ssn).
ReceiverVarsMatch(s .out. rbuf * 5. rs. rsi).
Selectors~atch(s .sent. out .pnd. rbut * r.rs ssn. rsn),
Seq~atch(sr.bit).
Empty(qp): Boolean;

define SenderVarsuatch(s.sent.pend.sr.rs.ssn)
Sol ectorsMatch(s. sent, Received ( ) , pond, Recei verBuf fer(s) s r. rs. $an. RSV(s))

ReceiverVarsMatch(s.out.rbuf.sr~r5.tsn)
SelectorsMatch(s. Sent(s), out. Pond ing(s), rbuf sr. rs,SSN(s). rsn);

define SelectorsMatch(s.sent~out.pend.rbuf.2r.r2.ssfl.rsn) =

sent - Sent(s) and
out - Received(s) and
pond - Pending(s) and
rbuf= ReceiverBuffer(s) and
s2r - Senderl'oleceiver(s) and
r2s a ReceiverTboender(s) and
ssn a SSMI(s) and
rsn -RSV(s);

axiom SoqMatch(pktbufi)

not Empty(pktbuf) and Seq(Front(pktbuf)) =i;

define Enmpty(qp) a, qpsNewQueu@OfPacket;

Interface PSPost(mag~succ.sent .sent.sr .sr.pend .pend.san).
STPost(sr.sra. rs'rs .pend' .pend . sn . ssn).

ISPost( sent, pond. ssn).

DPost(sent .sent~rbuf ,rbuf.rs' .ra),
IRPost(out.rbuf.ran) :Boolean;

note the assertion definitions go here;

end (AlContext);
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